Labeling Emotions in Suicide Notes: Cost-Sensitive Learning with Heterogeneous Features
نویسندگان
چکیده
منابع مشابه
Labeling Emotions in Suicide Notes: Cost-Sensitive Learning with Heterogeneous Features
This paper describes a system developed for Track 2 of the 2011 Medical NLP Challenge on identifying emotions in suicide notes. Our approach involves learning a collection of one-versus-all classifiers, each deciding whether or not a particular label should be assigned to a given sentence. We explore a variety of features types-syntactic, semantic and surface-oriented. Cost-sensitive learning i...
متن کاملActive Learning with Spatially Sensitive Labeling Costs
In active learning, it is typically assumed that all instances require the same amount of effort to label and that the cost of labeling an instance is independent of other selected instances. In spatially distributed data such as hyperspectral imagery for land-cover classification, the act of labeling a point (i.e., determining the land-type) may involve physically traveling to a location and d...
متن کاملqfd planning with cost consideration in fuzzy environment
در عصر حاضر که رقابت بین سازمان ها بسیار گسترش یافته است، مطالعه و طرحریزی سیستم های تولیدی و خدماتی به منظور بهینه سازی عملکرد آنها اجتناب ناپذیر می باشد. بخش عمده ای از رقابت پذیری سازمان ها نتیجه رضایتمندی مشتریان آنها است. میزان موفقیت سازمان های امروزی به تلاش آنها در جهت شناسایی خواسته ها و نیازهای مشتریان و ارضای این نیازها بستگی دارد. از طرفی کوتاه کردن زمان ارائه محصول/خدمات به مشتریان...
15 صفحه اولActive Learning by Labeling Features
Methods that learn from prior information about input features such as generalized expectation (GE) have been used to train accurate models with very little effort. In this paper, we propose an active learning approach in which the machine solicits “labels” on features rather than instances. In both simulated and real user experiments on two sequence labeling tasks we show that our active learn...
متن کاملCombining Lexico-semantic Features for Emotion Classification in Suicide Notes
This paper describes a system for automatic emotion classification, developed for the 2011 i2b2 Natural Language Processing Challenge, Track 2. The objective of the shared task was to label suicide notes with 15 relevant emotions on the sentence level. Our system uses 15 SVM models (one for each emotion) using the combination of features that was found to perform best on a given emotion. Featur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biomedical Informatics Insights
سال: 2012
ISSN: 1178-2226,1178-2226
DOI: 10.4137/bii.s8930